FREE ELECTRONIC LIBRARY - Abstract, dissertation, book


Vol.2 Issue.3,

March 2014.


Pgs: 90-95

ISSN (ONLINE): 2321-3051



Fabrication Of Human Powered Reverse Osmosis Water

Purification Process

A.Peramanana, A.Anto willy baldb, P.Arunkumarb, G.Naveen kumarb, A.Veera sekarb a Associate professor, Department of Mechanical Engineering, Jay Shriram Group Of Institution, Tiruppur, Tamilnadu, India.

b Undergraduate Student,Department of Mechanical Engineering, Jay Shriram Group Of Institution, Tiruppur, Tamilnadu, India.

Abstract The aim of this paper is to discover whether human powered reverse osmosis is a viable option for producing pure water. The matters at hand are to determine whether human power is enough to operate such a system, how much clean drinking water it will produce, and if it produces a reasonable amount for the work put in.

Simple techniques for treating water at home, such as chlorination, filters, and solar disinfection, and storing it in safe containers could save a huge number of lives each year. Reducing deaths from waterborne diseases is a major public health goal. A device was designed to test the practicality of this idea through a numerical analysis. The device uses a pedal to harness human motion to convert it into usable power to run a reverse osmosis filtration system. This was used to calculate the power needed to power such a design and was then compared with researched data of available power from humans. It indicated that a human could easily provide enough power to run a reverse osmosis system.

Keywords: filtration; reverse osmosis; human powered; portable water.

1. Introduction The Earth is covered by 75% water, yet one of the world’s greatest issues is a lack of drinking water. Every year, almost four million people die from water-related diseases and 98% of those occur in the developing world. In response to such a need, this idea is proposed to produce clean drinking water by reverse osmosis filtration by means of human power. There are several means to purify water; however, because of its incredible thoroughness, a reverse osmosis system has been preferentially selected for this design.

According to a 2007 World Health Organization (WHO) report, 1.1 billion people lack access to an improved drinking water supply, 88 percent of the 4 billion annual cases of diarrheal disease are attributed to unsafe water and inadequate sanitation and hygiene, and 1.8 million people die from diarrheal diseases each year.The WHO

–  –  –

estimates that 94 percent of these diarrheal cases are preventable through modifications to the environment, including access to safe water.

2. REVERSE OSMOSIS Osmosis is a natural process in which a liquid from a less concentrated solution flows through a semi-permeable membrane to a more concentrated solution. Pressure is applied on the more highly concentrated solution so that liquid flows from the higher concentrated solution to the lower concentrated solution.In this case the highly concentrated solution is dirty, undrinkable water. For this system, pressure is applied so that water molecules are forced through a 0.0001 micron semi-permeable membrane.

Figure 1: Reverse Osmosis

Reverse osmosis systems can often improve thequality of water. The reverse osmosis water treatmentmethod has been used extensively to convert brackishor seawater to drinking water, to clean up wastewater,and to recover dissolved salts from industrialprocesses. It is becoming more popular in the homemarket as homeowners are increasingly concernedabout contaminants that affect their health, as well asabout non-hazardous chemicals that affect the taste,odor, or color of their drinking water.

Reducing Concentration through RO

Reverse osmosis treatment reduces the concentration of dissolved solids, including a variety of ions and metals and very fine suspended particles such as asbestos that may be found in water. Although RO membranes can remove virtually all microorganisms, it is currently recommended that only microbiologically safe water be fed into RO systems. Reverse osmosis is an effective method ofreducing the concentration of total dissolved solidsand many impurities found in water.

Reverse Osmosis Process

In the reverse osmosis process a cellophane-likemembrane separates purified water from contaminatedwater.

Osmosis occurs whentwo solutions containing different quantities of dissolvedchemicals are separated by a semi permeablemembrane. Osmotic pressure of the dissolved chemicalcauses pure water to pass through the

–  –  –

membranefrom the dilute to the more concentrated solution. There is a natural tendency for chemicalsto reach equal concentrations on both sides of themembrane.

–  –  –

To run an RO system, there needs to be a form of energy applied to force pressure through it.The issue is whether human power is actually enough to run an RO system and whether the potable water that is produced from it is effective enough for the work put in. A pedal pump was chosen to harness human power effectively because of its simplicity, widespread use, and relatively great power potential from human leg strength.


A single-speed pedal simply utilizes an extended length chain connected to the system driving gear and a few pulleys to redirect the chain to keep it riding on the gears. The pump system starts with a gear driven shaft attached to the pedal chain. The shaft turns a disk and connection rod. The pump handles are fixed to the other end of the connection rod, and the pump ends are connected directly to fittings tapped into the main tank. The diameter of the drive disk is equal to the throw of the pumps.The pump has a 120 psi capability to maintain pressure.Another pump is also used to build pressure faster to maintain pressure and for redundancy in the event of failure.

The main component of the entire design is the Reverse Osmosis System. It has four different filtering stages used to purify and improve the quality of the water. The main filter in this system utilizes reverse osmosis to remove any impurities down to 0.0001 microns in size. This removes virtually any traces of metals, dust, bacteria, and viruses as it is the most thorough of filters.

–  –  –

The entire process of the design begins by adding salt water into the tank. All of the heavy sediment is immediately removed as the water passes through several layered mesh micron filters. The initial filtering step is crucial because the RO filter would quickly clog if it had to filter heavier sediments. The tank lid must then be sealed securely so that pressure can be built in the tank.

To set the purification system in motion we need to begin pedaling the pedal. Since the pump mechanism is geared to minimize effort needed to operate it, the user feels little to no difference in having to power the pump system compared to pedal a bicycle.

The water then enters the four stages of filters in the RO system. The first stage removes any very heavy sediment down to five microns still left in the water that the first set of filters did not catch. The second stage

removes any unwanted color, taste, and odor. These two stages prepare the water for the most crucial step:

reverse osmosis. Without these previous two filters, the RO membrane could easily be destroyed by certain chemicals that may be in the dirty water. The more filtered the water is before passing through the RO membrane, the longer the membrane will last. This third stage is the heart of the system as it removes all particles down to 0.0001 micron in size. The fourth and final stage is a repeat of the second stage, purely to optimize water quality. From here, the water exits the system as potable water and rinse water. It is important to note that only the purest water is used for drinking and that alone. The rinse water however can be used in many ways other than drinking, such as cooking, cleaning, or irrigation so that it never gets wasted.


The most common RO membrane materials are polyamide thin film composites (TFC) or cellulosic types like cellulose acetate (CA), cellulose triacetate (CTA), or blends. Very thin membranes are made from these synthetic fibers. Membrane material can be spiralwound around a tube, or hollow fibers can be bundled together, providing a tremendous surface area for watertreatment inside a compact cylindrical element. Hollow fiber membranes have greater surface area but are more easily clogged than the spiral wound membranes commonly used in home RO systems.


The performance of an RO system depends on membranetype, flow control, feed water quality (e.g., turbidity, TDS, and pH), temperature, and pressure. Thestandard at which manufacturers rate RO system performanceis 77 °F, 60 pounds per square inch (psi),and TDS at 500 parts per million (ppm).

The recovery rate, or efficiency, of the system iscalculated by dividing the volume of treated waterproduced by

the volume of water fed into the system:

–  –  –

For an RO system to function properly, there must beenough water pressure. Although most home ROsystems are rated at 60 pounds per square inch, theincoming feed fine pressure of many private watersystems is less than 40 psi.The RO system must workagainst back pressure created in the storage tank as itfills with water and compresses the air in the tank.

–  –  –

The salt water is stored in the water tank. The salt water is taken to purifier arrangement by the help of pedal pump. The pedal is operated so that the pump operates. The pump wills the salt water from the tank to the first filter. Then the filtered water will be sent through the second filter automatically because of gravitational force.

The first filter is the sedimentation filter and the second filter is the salt filter in which the salt from the water is removed and purified. After the filtering process takes place the filtered water is collected in the collecting tank.

Here we use a pedal and chain drive to operate the pump to pump the water from low level to the high level for the filtering process. It is operated and human controlled. The purifier removes the dust and unwanted particles in water. The purification process is completed after the water is collected in a separate tank. The collected water may be used for further applications.


1. It can be used in water purifying industries.

2. This technology has advantage of a membrane based process where concentration and separation is achieved without a change of state and without use of chemicals or thermal energy, thus making the process energy efficient and ideally suited for recovery applications.


Following are the advantages of the RO process that make it attractive for dilute aqueous wastewater treatment include

1. RO systems are simple to design and operate, have low maintenance requirements, and are modular in nature, making expansion of the systems easy.

2. Both inorganic and organic pollutants can be removed simultaneously by RO membrane processes.

3. RO systems allow recovery/recycle of waste process streams with no effect on the material being recovered.

4. RO systems require less energy as compared to other technology.

5. RO processes can considerably reduce the volume of waste streams so that these can be treated more efficiently and cost effectively by other processes such as incineration.

–  –  –

not be further behind and it will not be an illusion. The success of these procedures lies at the hands of the environmentalist and at the hands of the environmental engineer. Vision and success in this domain is slowly opening up windows of optimism and innovation in future years to come.


The project carried out by us made an impressing task in the field of water purification method. This project has also reduced the cost involved in the concern. project has been designed to perform the entire requirement task which has also been provided.

–  –  –

1. Urieli, Israel. Ohio University, "Human Powered Vehicles 1." n.d. Web. 20 Mar 2011.

2. APEC, FreeDrinkingWater.com. "RO-CTOP Ultra Reverse Osmosis System." 2010. Web. 20 Mar 2011.

3. FEMA, FEMA.gov. "Water." n.d. Web. 25 Mar 2011.

4. Water.org. Water.org, Inc., "Water Crisis '09." 2009. Web. 24 Mar 2011.

–  –  –

Similar works:

«The Multilingual Dictionary of Real Estate OTHER TITLES FROM E & FN SPON European Directory of Property Developers, Investors and Financiers 2nd edition Bernard Williams Associates Industrial Property Markets in Western Europe Edited by B. Wood and R. Williams Microcomputers in Property A surveyor's guide to Lotus 1-2-3 and dBASE IV T.J. Dixon, O. Bevan and S. Hargitay National Taxation for Property Management and Valuation A. MacLeary Project Management Demystified: Today's tools and...»

«In: Friedemann Matten (Hrsg): Total Vernetzt. Springer-Verlag 2003, pp. 1-41 Vom Verschwinden des Computers – Die Vision des Ubiquitous Computing° Friedemann Mattern Institut für Pervasive Computing, ETH Zürich In the 21st century the technology revolution will move into the everyday, the small and the invisible. Mark Weiser (1952–1999) Kurzfassung. Bedingt durch weiter anhaltende Fortschritte in der Mikroelektronik und Kommunikationstechnik scheinen in den nächsten Jahren die Visionen...»

«IOSR Journal Of Pharmacy (e)-ISSN: 2250-3013, (p)-ISSN: 2319-4219 www.iosrphr.org Volume 4, Issue 8 (August 2014), PP. 18-25 Antibacterial and phytochemical analysis of Banana fruit peel *Ehiowemwenguan, G.,1 *Emoghene, A. O.1and *Inetianbor, J.E.2 Department of Microbiology, University of Benin, P.M.B. 1154, Benin City, Nigeria Department of Microbiology, Federal University, Wukari, P.M.B 1020, Taraba State, Nigeria ABSTRACT: The in vitro antibacterial activity of ethanolic and aqueous extract...»

«Student thesis Sensor Fusion of Data From a Stereoscopic Camera and a Laser Rangefinder Mounted on a Robot Operated in a Structure Environment Author: Supervisors: Sigurd Mørkved Albrektsen Geir Mathisen Sigurd Aksnes Fjerdingen Espen Helle October 15, 2013 Abstract Robot vision using stereo cameras can be a very difficult task. The basis for this is that it is very difficult to recognize a specific object from different angles. This report describes an approach to enhance robot vision...»

«Perceived Demand for Online and Hybrid Doctoral Programs in Technical Education Jim Flowers Holly Baltzer Ball State University Data from the recurring Sloan-C snapshot of the status of online education in the US indicate that online education is becoming increasingly a part of the long-term goals and strategies of many institutions (Allen & Seaman, 2005). Fifty-nine percent of schools surveyed in 2005 indicated options for online education as a critical part of their long-term plan, up from...»

«Page 229 AGREEMENT ON SUBSIDIES AND COUNTERVAILING MEASURES Members hereby agree as follows: PART I: GENERAL PROVISIONS A rticle 1 Definition of a Subsidy 1.1 For the purpose of this Agreement, a subsidy shall be deemed to exist if: (a)(1) there is a financial contribution by a government or any public body within the territory of a Member (referred to in this Agreement as government), i.e. where: (i) a government practice involves a direct transfer of funds (e.g. grants, loans, and equity...»

«This Accepted Author Manuscript (AAM) is copyrighted and published by Elsevier. It is posted here by agreement between Elsevier and the University of Turin. Changes resulting from the publishing process such as editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this version of the text. The definitive version of the text was subsequently published in A review of studies applying environmental impact assessment methods on fruit production...»

«Aeronautical Engineering Impressum Prof. Dr. Hartmut Zingel, Head of Department of Automotive & Aeronautical Engineering, Hamburg University of Applied Sciences, Berliner Tor 9, 20099 Hamburg, Germany Design Ingrid Weatherall Photos Fotoarchiv Luftfahrtstandort Hamburg (AIRBUS S.A.S.), Lufthansa Archiv, Anne Gabriel-Jürgens, Hamburg Tourismus GmbH HAMBURG – the world's third largest centre for civil aviation The industrial motor in Hamburg is now the aviation industry with aircraft...»

«2010:030 PB M ASTE R’S THE SI S Standing Contact Fatigue Analysis MASTER’S THESIS of Steels with Standing Contact Fatigue Analysis Different Microstructures Of Steels with Different Microstructures RANGA NAVEEN KUMAR Ranga Naveen Kumar Advanced material Science and Engineering Department of Applied Physics and Mechanical Engineering M.Sc. in Advanced material Science and Engineering Division of Engineering Materials CONTINUATION COURSES Luleå University of Technology Department of Applied...»

«Die Erforschungsgeschichte der Eifel-Geologie -200 Jahre ein klassisches Gebiet geologischer ForschungVon der Fakultät für Georessourcen und Materialtechnik der Rheinisch-Westfälischen Technischen Hochschule Aachen zur Erlangung des akademischen Grades eines Doktors der Naturwissenschaften genehmigte Dissertation vorgelegt von Dipl.Geol. Sabine Rath aus Aachen Berichter: Univ.-Prof. Dr. rer. nat. Werner Kasig, Aachen Univ.-Prof. Dr. rer. nat. Wilhelm Meyer, Bonn Univ.-Prof. Dr. phil. Gerd...»

«KESO: Konstruktiver Speicherschutz für Eingebettete Systeme Der Technischen Fakultät der Universität Erlangen-Nürnberg zur Erlangung des Grades DOKTOR-INGENIEUR vorgelegt von Christian Walter Alois Wawersich Erlangen 2009 Als Dissertation genehmigt von der Technischen Fakultät der Universität Erlangen-Nürnberg Tag der Einreichung: 27.10.2008 Tag der Promotion: 05.03.2009 Dekan: Prof. Dr.-Ing. habil. Huber Johannes Erster Berichterstatter: Prof. Dr. Wolfgang Schröder-Preikschat Zweiter...»

«Automatic Derivation, Integration and Verification of Synchronization Aspects in Object-Oriented Design Methods Quarterly Report DARPA Order K203/AFRL Contract F33615-00-C-3044 ∗ Matthew Dwyer John Hatcliff Masaaki Mizuno Mitch Neilsen Gurdip Singh January, 2001 In this project, which we call S2 aVES (Specification, Synthesis and Verification of Embedded Systems), we investigate solutions to the problem of implementing robust, efficient global synchronization policies in multithreaded,...»

<<  HOME   |    CONTACTS
2016 www.abstract.xlibx.info - Free e-library - Abstract, dissertation, book

Materials of this site are available for review, all rights belong to their respective owners.
If you do not agree with the fact that your material is placed on this site, please, email us, we will within 1-2 business days delete him.