WWW.ABSTRACT.XLIBX.INFO
FREE ELECTRONIC LIBRARY - Abstract, dissertation, book
 
<< HOME
CONTACTS



Pages:   || 2 | 3 | 4 | 5 |   ...   | 6 |

«WILLIAM F. RUDDIMAN Department of Environmental Sciences, University of Virginia, Charlottesville, VA 22904, U.S.A. E-mail: wfr5c ...»

-- [ Page 1 ] --

THE ANTHROPOGENIC GREENHOUSE ERA

BEGAN THOUSANDS OF YEARS AGO

WILLIAM F. RUDDIMAN

Department of Environmental Sciences, University of Virginia, Charlottesville, VA 22904, U.S.A.

E-mail: wfr5c@virginia.edu

Abstract. The anthropogenic era is generally thought to have begun 150 to 200 years ago, when

the industrial revolution began producing CO2 and CH4 at rates sufficient to alter their compositions in the atmosphere. A different hypothesis is posed here: anthropogenic emissions of these gases first altered atmospheric concentrations thousands of years ago. This hypothesis is based on three arguments. (1) Cyclic variations in CO2 and CH4 driven by Earth-orbital changes during the last 350,000 years predict decreases throughout the Holocene, but the CO2 trend began an anomalous increase 8000 years ago, and the CH4 trend did so 5000 years ago. (2) Published explanations for these mid- to late-Holocene gas increases based on natural forcing can be rejected based on paleoclimatic evidence. (3) A wide array of archeological, cultural, historical and geologic evidence points to viable explanations tied to anthropogenic changes resulting from early agriculture in Eurasia, including the start of forest clearance by 8000 years ago and of rice irrigation by 5000 years ago. In recent millennia, the estimated warming caused by these early gas emissions reached a global-mean value of ∼0.8 ◦ C and roughly 2 ◦ C at high latitudes, large enough to have stopped a glaciation of northeastern Canada predicted by two kinds of climatic models. CO2 oscillations of ∼10 ppm in the last 1000 years are too large to be explained by external (solar-volcanic) forcing, but they can be explained by outbreaks of bubonic plague that caused historically documented farm abandonment in western Eurasia. Forest regrowth on abandoned farms sequestered enough carbon to account for the observed CO2 decreases. Plague-driven CO2 changes were also a significant causal factor in temperature changes during the Little Ice Age (1300–1900 AD).

1. Introduction Crutzen and Stoermer (2000) called the time during which industrial-era human activities have altered greenhouse gas concentrations in the atmosphere (and thereby affected Earth’s climate) the ‘Anthropocene’. They placed its start at 1800 A.D., the time of the first slow increases of atmospheric CO2 and CH4 concentrations above previous longer-term values. Implicit in this view is a negligible human influence on gas concentrations and Earth’s climate before 1800 AD.

The hypothesis advanced here is that the Anthropocene actually began thousands of years ago as a result of the discovery of agriculture and subsequent technological innovations in the practice of farming. This alternate view draws on two lines of evidence. First, the orbitally controlled variations in CO2 and CH4 concentrations that had previously prevailed for several hundred thousand years fail to explain the anomalous gas trends that developed in the middle and late Holocene.

–  –  –

Second, evidence from palynology, archeology, geology, history, and cultural anthropology shows that human alterations of Eurasian landscapes began at a small scale during the late stone age 8000 to 6000 years ago and then grew much larger during the subsequent bronze and iron ages. The initiation and intensification of these human impacts coincide with, and provide a plausible explanation for, the divergence of the ice-core CO2 and CH4 concentrations from the natural trends predicted by Earth-orbital changes.

2. Early Anthropogenic Methane Emissions

Several studies have inferred anthropogenic methane emissions in pre-industrial centuries (for example, Etheridge et al., 1996), but Ruddiman and Thomson (2001) proposed that large-scale generation of methane by humans actually began back in the middle Holocene, when natural processes lost control of methane trends. For hundreds of thousands of years, CH4 concentrations in Vostok ice had followed the 23,000-year orbital insolation cycle (Figure 1a). The highly coherent match between methane and insolation reveals this natural orbital control. Age offsets between the time scale shown (from Ruddiman and Raymo, 2003) and earlier time scales based on ice-flow models (Jouzel et al., 1993; Petit et al., 1999) lie within the estimated errors of the latter.

This coherent relationship supports the view that orbital-scale methane variations primarily reflect changes in the strength of tropical monsoons (Chappelaz et al., 1990; Blunier et al., 1995; Brook et al., 1996). The orbital monsoon theory of Kutzbach (1981) posits that increases in summer insolation heat land masses and cause air to rise, and the rising air lowers surface pressures and draws in moist air from the ocean. As the incoming ocean air rises over high topography and cools, it drops moisture in heavy monsoon rains. The monsoon rains flood wetlands, which release methane. The methane signal follows a 23,000-year tempo because orbital precession dominates summer insolation changes at low latitudes where monsoons occur.

Differences in CH4 concentrations in Greenland versus Antarctic ice indicate that ∼2/3 of the CH4 flux on orbital time scales comes from tropical monsoon sources, and the remaining third from high northern latitudes (Chappellaz et al., 1997; Brook et al., 2000). Both of these sources follow the same 23,000-year tempo, because the insolation peaks that heat low-latitude landmasses and create monsoons also warm higher latitude wetlands that release additional CH4.





Annually layered GRIP ice in Greenland provides a more stringent test of these proposed controls (Figure 1b). The most recent CH4 maximum is centered between 11,000 and 10,500 years ago (Blunier et al., 1995), coincident with the last maximum in July (mid-summer) insolation. This timing agrees both with the orbital monsoon theory and with simultaneous precession control of boreal (mainly Siberian) CH4 sources. Although brief CH4 minima interrupted this trend during

THE ANTHROPOGENIC GREENHOUSE ERA BEGAN THOUSANDS OF YEARS AGO

Figure 1. Comparison of July insolation values from Berger and Loutre (1996) with ice-core concentrations of atmospheric CH4. (a) Long-term Vostok CH4 record of Petit et al. (1999), using time scale of Ruddiman and Raymo (2003). (b) GRIP CH4 record from Blunier et al. (1995), dated by counting annual layers. Early Holocene CH4 trend projected in late Holocene to values reached during previous early-interglacial CH4 minima.

264 WILLIAM F. RUDDIMAN the Younger Dryas and near 8100 yrs BP, CH4 values then returned to the broader trend predicted by the Earth-orbital forcing.

This expected pattern continued until 5000 years ago, with the decline in CH4 values matching the decrease of insolation. Near 5000 yrs BP, however, the CH4 signal began a slow increase that departed from the continuing decrease expected from the orbital-monsoon theory (Figure 1b). This increase, which continued through the late Holocene, culminated in a completely anomalous situation by the start of the industrial era. With insolation forcing at a minimum, CH4 values should also have reached a minimum, yet they had instead returned to the 700-ppb level typical of a full monsoon (Figure 1b). The late-Holocene CH4 trend cannot be explained by the natural orbital CH4 control that had persisted for the previous 350,000 years (Figure 1a).

Decreases in the CH4 concentration gradient between Greenland and Antarctica indicate that the late Holocene CH4 increase came from north-tropical sources rather than from boreal sources near the latitude of Greenland (Chappellaz et al., 1997; Brook et al., 2000). Chappellaz et al. (1997) concluded that the increased tropical CH4 emissions since 5000 BP could have come from natural or human sources, or some combination of the two.

Ruddiman and Thomson (2001) pointed out that the broad-scale moisture patterns assembled by COHMAP (1988) from large arrays of pollen and lake-level data overwhelmingly confirm an ongoing drying trend after 9000 yrs BP across tropical Africa, Arabia, India, and Asia. As a result, natural (monsoonal) sources could not possibly have been responsible for the CH4 increase and should instead have caused a further decrease. They concluded that the CH4 increase could only have been anthropogenic in origin. They further noted that humans had adapted wild rice to cultivation by 7500 yrs BP (Chang, 1976; Glover and Higham,

1996) and had begun to irrigate rice near 5000 yrs BP (Roberts, 1998). By 2000 years ago, advanced civilizations in China and India had organized large-scale water-management projects for irrigation and other uses.

Ruddiman and Thomson (2001) proposed that the actual size of the anthropogenic CH4 anomaly just prior to the industrial era must have been larger than the observed increase (Figure 1b). They reasoned that the full anomaly must include not just the 100-ppb CH4 rise observed since 5000 years BP, but also the natural decrease that would have occurred had the CH4 trend continued falling along with summer insolation. One basis for estimating the full anomaly is evident from the long Vostok CH4 record in Figure 1a. Most CH4 minima are ‘clipped’ (truncated) near a value of 450 ppb, except for lower values near large glacial maxima. The full CH4 anomaly caused by humans is therefore ∼250 ppb, the difference between the ‘natural’ 450-ppb value and the 700-ppb level actually reached just prior to the industrial era.

The measured CH4 increase of 100 ppb can be explained by a simple linear scaling of 1990 population and anthropogenic CH4 emissions to 1750 population levels, but the full 250-ppb anomaly requires an early anthropogenic CH4 source

THE ANTHROPOGENIC GREENHOUSE ERA BEGAN THOUSANDS OF YEARS AGO

that was disproportionately large compared to human populations in 1750 AD.

Ruddiman and Thomson (2001) suggested that the most likely such source is the inefficiency of early rice irrigation: extensively flooded wetlands harboring numerous weeds would have emitted large amounts of methane while feeding relatively few people.

In summary, the ‘anomalous’ late Holocene CH4 increase cannot be explained by natural forcing, but it coincides closely with innovations in agriculture that produce methane in abundance. The anthropogenic greenhouse era began at least 5000 years ago.

3. The Holocene CO2 Trend Is Also Anomalous

Carbon dioxide is a much more abundant gas than methane, and its variations have had a larger climatic impact over all time scales. The issue addressed in this section is whether or not the late-Holocene CO2 trend exhibited the ‘natural’ behavior typical of longer orbital time scales or became ‘anomalous’. Natural orbital-scale CO2 trends are more complicated than those of methane. CO2 variations occur at all three orbital periods, with the 100,000-year cycle dominant (Lorius et al., 1985;

Petit et al., 1999). The origins of these CO2 cycles are not yet clear. This uncertainty complicates efforts to project natural CO2 trends into the Holocene and detect any ‘anomalous’ trend (similar to that of methane) One way to detect any anomalous pattern is to compare Holocene CO2 trends to previous interglaciations, the times that provide the closest climatic analogs in the natural record (Figure 2a). Each of the last four deglaciations has been marked by a rapid CO2 rise to a maximum timed just ahead of an ice volume (δ 18 O) minimum.

For the three previous interglaciations, CO2 values then dropped steadily for more than 10,000 years (Figure 2b). At times, the CO2 decreases leveled off briefly, but in no case did they reverse direction and return to the late-deglacial CO2 maximum.

The Holocene trend is different. Indermuhle et al. (1999) published a highresolution, high-precision CO2 record of the last 11,000 years at Taylor Dome, Antarctica (Figure 2c). This record confirmed a trend in the lower-resolution Vostok record of Figures 2a, b. CO2 values reached a peak of 268 ppm between 11,000 and 10,000 years ago. This late-deglacial peak has the same relative placement as the CO2 peaks reached during the three previous deglaciations. CO2 values then decreased to 261 ppm by 8000 years ago, initially following a downward trend similar to the three earlier interglaciations.

Near 8000 years ago, however, the CO2 trend began an anomalous increase that has no counterpart in any of the three preceding interglaciations, with values rising in recent millennia to 280–285 ppm, some 15 ppm above the late-deglacial peak.

This 20–25 ppm CO2 increase during the last 8000 years is anomalous in a manner similar to the CH4 increase of the last 5000 years.

266 WILLIAM F. RUDDIMAN Figure 2. Concentrations of atmospheric CO2 in Antarctic ice cores. (a) CO2 trends from Vostok ice record of Petit et al. (1999) using time scale of Ruddiman and Raymo (2003). Marine δ 18 O signal from SPECMAP (Imbrie et al., 1984). (b) CO2 trends during 4 deglacial-interglacial intervals.

Asterisks mark late-deglacial CO2 maxima; circles show positions of early-interglacial CH4 minima that follow 11,000 years later during insolation minima similar to today. (c) High-resolution CO2 record from Taylor Dome of Indermuhle et al. (1999). Early-Holocene CO2 trend projected during late Holocene toward circled values reached during previous interglaciations.

THE ANTHROPOGENIC GREENHOUSE ERA BEGAN THOUSANDS OF YEARS AGO

As was also the case for CH4, the full Holocene CO2 anomaly must actually be larger than the observed increase, because it should also include the amount by which the CO2 concentration would have fallen had it continued the downward trend typical of previous interglaciations. The natural 23,000-year ‘metronome’ embedded in the CH4 record at Vostok (Figure 1a) provides a way to estimate the size of this expected CO2 decrease.

Today, summer insolation is at a minimum at low latitudes (Figure 1b). If anthropogenic CH4 emissions had not over-ridden the natural monsoon control for the last 5000 years, present CH4 values would also be at an orbital-scale minimum trailing one half-cycle (11,000 years) behind the late-deglacial CH4 maximum.



Pages:   || 2 | 3 | 4 | 5 |   ...   | 6 |


Similar works:

«  Special Operations Commemoration: A Study of Monuments, Memory and  Memorialization Practices of Elite Organizations    COL Michael Bineham  Introduction Historian Thomas Laqueuer identified the two central themes used for this study, noting, with regard to war, that “remembrance follows armed conflict, as night follows day” and the more universal feeling that “everyone has a memorable life to live, or in any case the right to a life story.”1 This paper acknowledges...»

«CONCEPTION OF THE UNION IN THE ORTHODOX PATRIARCHATE OF ANTIOCH (1622 1672) HISTORICAL PART by Abdallah Raheb Doctor of Theology Licentiate in Philosophy Diploma in German Letters Professor of Ecumenical Sciences at the University of Kaslik Beirut 1981 translated by Nicholas J. Samra To their Beatitudes the five Patriarchs, Orthodox and Catholic, who bear the title of the city of God, Antioch. In commemoration of the second Ecumenical Council held in 381 in Constantinople, the General Council...»

«Final draft. To appear in Logical Analysis and History of Philosophy. Reconstructing Arguments: Formalization and Reflective Equilibrium Georg Brun University of Zurich, Centre for Ethics, Zollikerstrasse 117, 8008 Zurich, Switzerland, Georg.Brun@philos.uzh.ch Abstract Traditional logical reconstruction of arguments aims at assessing the validity of ordinary language arguments. It involves several tasks: extracting argumentations from texts, breaking up complex argumentations into individual...»

«“Our Sister” by Mary Joan Cook, RSM, ’47, Ph.D. Sister Mary Consolata was a model. With that beautiful smile she could have been a professional one, but I mean that she was a model Sister of Mercy, an example for all. She was just 22 and a June graduate of Saint Joseph College when she chose to enter the Mercy community in 1939. During the 1940s, she taught in Hartford’s parochial schools. Then, selected for graduate study, she entered and completed a doctoral program in History at...»

«Valedictory address at the Anjuman Taraqqi Urdu (Hind)’s conference ‘A Historical Appraisal of India's Composite Cultural Ethos: Perspectives from Urdu Literature’, March 9, 2014. Shared but Different: Perspectives on Indian Culture in Urdu Literature “Despite trying, I could not separate India from Pakistan and Pakistan from India,” the renowned Urdu short story writer Saadat Hasan Manto bemoaned. Stunned and mortified by the human tragedy of 1947, he wrote riveting narratives of the...»

«Martin-Luther-Universität Halle-Wittenberg Philosophische Fakultät I Sozialwissenschaften und historische Kulturwissenschaften Kommentiertes Vorlesungsverzeichnis Institut für Geschichte Sommersemester 2009 Liebe Kommilitoninnen und Kommilitonen, in diesem Kommentierten Vorlesungsverzeichnis finden Sie Informationen zu den Lehrveranstaltungen, die Ihnen das Institut für Geschichte und der Lehrstuhl für Alte Geschichte im Rahmen der geschichtswissenschaftlichen Studiengänge im...»

«Lehrveranstaltungen OAW Sommersemester 2010 1 INHALTSVERZEICHNIS B.A.-STUDIENGÄNGE Japanologie Japanologie Allgemein Japanologie — Schwerpunkt Sprachwissenschaft Japanologie Schwerpunkt Geschichte, Gesellschaft und Kultur im Kontext Ostasiens.6 Sinologie Koreanistik Wirtschaft und Politik Ostasiens Schwerpunkt Politik Ostasiens Schwerpunkt Wirtschaft Ostasiens M.A.-STUDIENGÄNGE Japanische Linguistik Geschichte Japans Chinesische Philosophie und Geschichte Chinesische Sprache und Literatur...»

«SCOTT HARDING Associate Professor School of Social Work University of Connecticut Email: scott.harding@uconn.edu West Hartford, CT 06117 Phone: (860) 570-9182 EDUCATION Doctorate of Social Welfare (Ph.D.) University of Washington, 2000 Dissertation: “Urban Redevelopment, Housing Loss and Class Segregation: A Case Study of Gentrification in Seattle” Master of Social Work (MSW) California State University, Sacramento, 1992 Concentration: Community Organizing, Planning and Administration...»

«Public Vessel Operator’s STUDY GUIDE PREPARATION FOR GETTING UNDERWAY 42 Table of Contents GENERAL INFORMATION AND THE LAW 3 THE MARINE ENVIRONMENT 46 REGISTRATION OF BOATS 10 NAVIGATION RULES 47 BOATS AND MOTORS 11 BOAT OPERATIONS 56 BOAT HANDLING AND MANEUVERING 15 NAVIGATION 59 EQUIPMENT 19 PERSONAL WATERCRAFT 63 FUELING AND VENTILATION 30 BOATING RELATED ACTIVITIES 66 ELECTRICAL SYSTEM 33 ACCIDENTS AND EMERGENCIES 71 FUEL SYSTEM 35 CHAPTER REVIEW 90 SAFE LOADING AND POWERING 38 Directions...»

«Airside Drivers Handbook BRISBANE AIRPORT As at 31st October 2014 DISTRIBUTION Airside Stakeholders AIRSIDE DRIVERS HANDBOOK BRISBANE AIRPORT Page 0 TABLE OF CONTENTS DOCUMENT INFORMATION REVISION HISTORY FOREWORD DEFINITIONS 1.0 Authority to Drive Airside (ADA) 1.1 Authority to Drive Airside (ADA) Application 1.1.2 Authority to Drive Airside – Identification 1.1.3 Authority to Drive Airside (ADA) – Testing 1.2 Authority to Drive Airside (ADA) – Categories 1.2.1 Category 1 ADA (Green)...»

«Anhang 3 Asymmetrische Kriegsführung und humanitäres Völkerrecht, Möglichkeiten der Weiterentwicklung 1 Einleitung Die traditionelle Vorstellung von Kriegen geht von zwei sich gegenüberstehenden staatlichen Armeen aus, eine Vorstellung, die heute nur selten mehr der Realität entspricht. Am nächsten kamen dieser Vorstellung in der jüngeren Geschichte noch die bewaffneten Konflikte um die Falkland/Malvinas-Inseln zwischen Argentinien und Grossbritannien 1982, der erste Golfkrieg zwischen...»

«Kritische Diskussion schwarzer Frauen / farbiger Frauen mit Bewegung der slut walks. Im Anhang die englischen Dokumente.Zusammenfassung der AF3IRM Antwort zu den SlutWalks: AF3IRM Mitglieder (Im/Migranten aus Lateinamerika, Asien und Afrika) haben den Aufruf zu den Slutwalks lange diskutiert. Zwar begrüßte man den Aufwand der Veranstalter, fühlte sich aber unsicher bezüglich der Antwort. Sie sehen sich selbst als Hauptopfer von Gewalt an Frauen, von sexueller Gewalt, Verschleppung,...»





 
<<  HOME   |    CONTACTS
2016 www.abstract.xlibx.info - Free e-library - Abstract, dissertation, book

Materials of this site are available for review, all rights belong to their respective owners.
If you do not agree with the fact that your material is placed on this site, please, email us, we will within 1-2 business days delete him.